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Measurements of the temperature dependence of the py; and p, elasto-optic tensor coeffi-
cients of BaTiO; in the cubic phase confirm the previously predicted anomalous T/(T — To)2
enhancement caused by critical polarization fluctuations (7' is the Curie-Weiss temperature).
The py; and p,, data provide an estimate of the polarization-fluctuation correlation volume of
Ve=4.5£1.2 x 104 1&3, and lend strong support to the view that V, is at most weakly tempera-
ture-dependent and does not display critical behavior.

The existence of critical polarization fluctua-
tions near the Curie point in ferroelectrics has
been inferred from a number of observations rang-
ing from low-frequency noise measurements® to
Raman, % neutron, 3 and electron scattering experi-
ments.* It was suggested by Hofmann® that mean
square polarization fluctuations in the cubic phase
of BaTiO; make a significant contribution to the
refractive index via the electro-optic interaction.
Recently, Wemple and DiDomenico® postulated that
this fluctuation contribution can be modulated by
strain, and, as a result, an anomalous enhance-
ment of the elasto-optic coefficients should occur
near the Curie temperature in ferroelectrics.
Using a simple thermodynamic treatment and a
temperature-independent polarization fluctuation
cluster volume, it was shown® that the fluctuation
contribution to the elasto-optic coefficients should
vary with temperature as T/(T - T,), where T,
is the Curie-Weiss temperature. Based,on avail-
able elasto-optic data for KTa, g5 Nbg, 3503 it was
concluded that the observed temperature depen-
dence of the quantity p,; - p;, was consistent with
the theoretical predictions and that the cluster or
correlation volume was approximately 10° A%, In
this paper, we report results of an accurate ultra-
sonic determination of the p;; and p,, elasto-optic
tensor coefficients in the cubic phase (131<T<
170 °C) of melt-grown single crystals of BaTiO,.
These results confirm the predicted 7/(T - T,)?
temperature dependence of the polarization fluctua-
tion contribution, provide an estimate of the cor-
relation volume, and lend further support to the
view expressed elsewhere*'? that the correlation
volume is at most weakly temperature dependent
in displacive ferroelectrics and does not display
critical behavior.

The elasto-optic coefficients were measured
using an ultrasonic Bragg diffraction technique
described elsewhere.® In the present case, a 200-
MHz longitudinal mode pulse of 200-nsec duration,
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generated by a ZnO thin-film transducer, was prop-
agated through a Z-cut crystal quartz buffer rod
and into a BaTiO;sample along the [100] axis. The
elasto-optic coefficients were determined relative
to those of quartz® by measuring the intensities of
the 6328 A laser light Bragg-diffracted by the in-
cident and reflected ultrasonic pulses in both the
BaTiO; sample and the quartz rod. The sample-
buffer rod assembly was mounted in a small oven
equipped with optical windows in which the tempera-
ture could be controlled to within 0.2 °C up to
170 °C. The bond between the BaTiO, crystal and
the quartz rod was made in the oven at tempera-
tures above the transitiontemperature (7,=131.2 °C
on cooling) with Nonaq stopcock grease. By polar-
izing the incident light beam either perpendicular
or parallel to the direction of ultrasonic strain,
i.e., along the [010] or [100] directions, respec-
tively, the absolute values of the coefficients p;,
and p,, were obtained separately. The magnitude
and sign of the ratio p,,/p,; were determined by
measuring the angle between the polarizations of
the diffracted and incident beams when the incident
beam was polarized at 45 ° to the [100] axis. !°
Combining the observation that 0< p,,/p,, < 1 with
the result that p;; — p;»>0,!! we conclude that both
P11 and p;, are positive. In Fig. 1, we show the
experimentally observed temperature dependence
of p;, and py, between 131.7 and 170°C. A strong
increase in the vicinity of T', is clearly evident.
We now show that the observed temperature de-
pendence of the elasto-optic coefficients can be
understood using the polarization fluctuation model
postulated in Ref. 6.

It is well known that in thermodynamic equilib-
rium the mean square polarization fluctuation in
a cubic crystal is given by

(6P =kTE*/V, , (1)

where % is Boltzmann’s constant, €* is the zero-
strain (clamped) dielectric constant, and V, is a
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FIG. 1. Temperature dependence of p;; and pqy
elasto-optic tensor coefficients of BaTiOj; in the cubic
phase. The Curie point on cooling is T,=131.2°C.

correlation volume.* Equation (1) essentially de-
fines V,. In the absence of strain, (6P%) contrib-
utes to the refractive index an amount

(on) =~ (M°)g (6P , (2)

where 7 is the refractive index and (g*) is a suit-
ably averaged clamped quadratic electro-optic
coefficient., The fluctuation contribution given by
Eq. (2) has been observed directly by Hofmann®

in flux-grown crystals and more recently by Singh
et al.'?in melt-grown BaTiO; crystals. In the pres-
ence of an applied strain 6x,,, the polarization
fluctuation contribution to the elasto-optic p coef-
ficients is given by

0P jrr = 0€6(1/n2)); /0%y . (3)

To compute (5(1/4%)),; we make the reasonable as-
sumption that a random spatial distribution of po-
larization fluctuation clusters exists with each
cluster having its polar axis along crystallographic
(100) directions. For reasons described else-
where, * we take these clusters to be long needles
of mean diameter A and mean length L so that
V,~LA%, Using this model and averaging over
clusters it can be shown that
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and

where A is defined by

A =(BP9/bx,

“5(6P%)/6x, ’ ®)

and we have used the symmetry relation 6(6P2) /6x,

= 8(8P2)/6x,. We obtain an expression for
8(6P%)/5x, by differentiating Eq. (1) with respect

to strain assuming that the correlation volume V,
does not change and using the Curie-Weiss law
€*=¢,C/(T ~ T,), where C is the Curie constant and
€, is the free-space permittivity. Because a de-
tailed fluctuation theory applicable to anisotropic
media is not available, we consider a simple model
in which polarization fluctuations normal to the
strain axis are not affected by the strain, i.e.,

A ~0. Equations (4), (6), and (1) then yield

011 = (RCeygT,/V ) (6T /5x,)
X2+ L/A)YT/(T - T,)] ()
and 0py,/0py,=8%2/8% - @)

Equation (8) provides a consistency check on the
A =0 model.

To check the validity of the functional form of
Eq. (7) we have plotted p,, versus T/(T - T,)? in
Fig. 2. The observed linear relationship strongly
supports the view that polarization fluctuations
give rise to the temperature-dependent elasto-optic
behavior shown in Fig, 1. Furthermore, this
result also provides evidence that the correlation
volume does not display critical behavior and is
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FIG. 2. Dependence of p;; and p;, elasto-optic coef~-
ficients on the quantity 7/(T~ Tp)? [see Eq. (7)]. The
Curie-Weiss temperature in this sample is T;=110°C
(see Ref. 16).



4336

at most weakly temperature dependent. The tem-
perature-independent contribution to p,; given by
the intercept in Fig. 2 has the value pJ; =0.43. At
T=T,, the fluctuation contribution is 6p,;=0. 14.
Direct observation of p;, and measurement of the
ratio p,,/p,, yield results for the p,, temperature
dependence which are consistent with the 7/(T = T, )?
relationship observed for p,, (see Fig. 2). Because
of the magnitude of p,, (approximately 20% of p,,)
and the smaller observed variation with tempera-
ture (see Fig. 1) the accuracy of these measure-
ments is poorer than for p;;. Our best estimate
for the temperature-independent component of p,,
is p9,=0.089 0. 004, and for the fluctuation com-
ponent is 5p;,=0.013+0.002. We thus find an ex-
perimental value of 8p,,/6p;;=0.093+0.02. To
compare this result with the prediction of Eq. (8)
we require values for g, and g},. To our knowledge
these quantities have not been measured, but they
can be obtained from the known values of the zero-
stress coefficients g%, and g%, by correcting for the
photoelastic contribution using the relations

gh-&h=pnQu+ 201290 ,
iz —8l2=112Qu1 + P11+ 112)Q12 -

Taking the electrostriction coefficients'® @,,
=0.10m*/C? and Q,,=~ 0. 038m*/C?, and the g coef-
ficients'* g%, = 0. 12m*/C? and gf, = - 0. 01m*/C?, we
find on substitution into Eq. (9)that gf, = 0.072m*/C?
and g%,=0.005m*/C% These results give
g1/g8~0.07. In view of the uncertainties in the
magnitudes of the g* and @ coefficients, we con-
sider that the agreement between experimental va-
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lues of 8py,/8py; and g/g1 is sufficient to support
the validity of Eq. (8) and hence the consistency
of the A~0 model.

We now calculate the correlation volume V,
using Eq. (7). It can be shown that!®

8T o/0%; = 2¢11€,C , (10)

where q,;=c;;@1; + 2¢12@Q;2, and c¢y; and c¢;, are ele-
ments of the elastic stiffness tensor. Substituting
C=1.8x10° °C, ! T=110 °C,* ¢;; =1.73x 10"
N/m?, 1" ¢1,=0.82x10" N/m?,'" and L/A=5-10
into Eq. (7) we obtain a value

V,=4.5+1.2x10* A% , (11)

Our choice for the aspect ratio L/A is based on
detailed arguments given elsewhere.®'* It is of
interest that the magnitude of the correlation vol-
ume obtained here from photoelastic measurements
is within the range 10*-10° A% predicted on the
basis of electron scattering, * bandedge tempera-
ture dependence, !® and refractive-index tempera-
ture-dependence results. 1?'®* These experiments
also indicate noncritical behavior of V.. Our ex-
perimental results lend support to the view ex-
pressed by Lines’ that intercell correlations are
weakly temperature dependent in displacive ferro
electrics.

In conclusion, we have shown that a simple po-
larization fluctuation model can account for the
temperature-dependent photoelastic behavior of
BaTiO, above the Curie point., The results indicate
that the correlation volume does not display crit-
ical behavior and has a value consistent with re-
sults obtained from other types of experiments,
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Deviations from the expected temperature dependence of the weak magnetic moment m are
explained by considering the microscopic differences between the dipole-dipole and single-

ion contributions to the anisotropy energy.

INTRODUCTION

Hematite (o Fe,0;) is a well-known antiferro-
magnet with a rhombohedral crystal structure.
It also possesses a weak spontaneous magnetiza-
tion. With cooling it is found that there exists a
certain temperature 7, at which the spontaneous
magnetization suddenly disappears.! Below T the
antiferromagnetic axis coincides with the [111]
direction, while above T') the antiferromagnetic
axis is in the (111) plane.? The origin of the weak
ferromagnetic moment is due to the Dzialoshinskii-
Moriya (DM) interaction®* which results in a
slight canting of the sublattice magnetizations to
produce a weak ferromagnetic moment. The ex-
pression for the Hamiltonian in the molecular field
(MF) approximation is usually written as®
€ =AM,* M- D« (M,xM,) - H- (ﬁ1+ﬁz)+€1r , (1)
where ﬁl and ﬁz are the sublattice magnetizations,
A is the MF constant, D is the DM vector and is
parallel to the [111] direction, H is the applied
field, and €, represents the anisotropy energy.

Searle® has recently suggested, using symmetry
arguments, that once the spins have been labeled
according to their respective sublattices the sense
of D along the [111] direction is still undetermined.
This then leads to the possibility of observing fer-
romagnetic domains which would not be associated
with antiferromagnetic domains.” This does not
rule out the existence of ferro- and antiferromag-
netic domains reported by Nathans et al.® It was
also stressed that D should be replaced by (D),
where {**+) means the appropriate statistical av-
erage. The expression for the weak magnetic mo-
ment m can then be written as

m=(Hp)/H)M . (2)
Here (Hp)=(D) M, M is the magnitude of one of the

sublattice magnetizations, and H,=AM. Equation
(2) implies that the ratio m/M =(D)/X should de-
crease with increasing temperature. It was also
suggested that the field-induced transition, for
temperatures below T, might be described better
using this statistical model than the usual MF ap-
proach where D is assumed to be constant (such as
in calculations by Cinader and Shtrikman®). The
purpose of this experiment was to look for some
of these effects using static magnetization mea-
surements.

RESULTS

The upper curve in Fig. 1 indicates the temper-
ature dependence of the normalized sublattice mag-
netization, M/M,. Values of M/M, are taken from
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FIG. 1. Temperature dependence of the weak ferro-
magnetic moment of hematite. The upper curve rep-
resents the normalized temperature dependence of the
sublattice magnetization, M/M,, the dots are the ex-
perimental data m/m,, while the lower curve is calcu-
lated from Eq. (6).



