

## Influence of Critical Polarization Fluctuations on the Photoelastic Behavior of $\text{BaTiO}_3$

M. G. Cohen,\* M. DiDomenico, Jr., and S. H. Wemple  
*Bell Telephone Laboratories, Murray Hill, New Jersey 07974*

(Received 12 December 1969)

Measurements of the temperature dependence of the  $p_{11}$  and  $p_{12}$  elasto-optic tensor coefficients of  $\text{BaTiO}_3$  in the cubic phase confirm the previously predicted anomalous  $T/(T - T_0)^2$  enhancement caused by critical polarization fluctuations ( $T_0$  is the Curie-Weiss temperature). The  $p_{11}$  and  $p_{12}$  data provide an estimate of the polarization-fluctuation correlation volume of  $V_c = 4.5 \pm 1.2 \times 10^4 \text{ \AA}^3$ , and lend strong support to the view that  $V_c$  is at most weakly temperature-dependent and does not display critical behavior.

The existence of critical polarization fluctuations near the Curie point in ferroelectrics has been inferred from a number of observations ranging from low-frequency noise measurements<sup>1</sup> to Raman,<sup>2</sup> neutron,<sup>3</sup> and electron scattering experiments.<sup>4</sup> It was suggested by Hofmann<sup>5</sup> that mean square polarization fluctuations in the cubic phase of  $\text{BaTiO}_3$  make a significant contribution to the refractive index via the electro-optic interaction. Recently, Wemple and DiDomenico<sup>6</sup> postulated that this fluctuation contribution can be modulated by strain, and, as a result, an anomalous enhancement of the elasto-optic coefficients should occur near the Curie temperature in ferroelectrics. Using a simple thermodynamic treatment and a temperature-independent polarization fluctuation cluster volume, it was shown<sup>6</sup> that the fluctuation contribution to the elasto-optic coefficients should vary with temperature as  $T/(T - T_0)^2$ , where  $T_0$  is the Curie-Weiss temperature. Based on available elasto-optic data for  $\text{KTa}_{0.65} \text{Nb}_{0.35}\text{O}_3$  it was concluded that the observed temperature dependence of the quantity  $p_{11} - p_{12}$  was consistent with the theoretical predictions and that the cluster or correlation volume was approximately  $10^5 \text{ \AA}^3$ . In this paper, we report results of an accurate ultrasonic determination of the  $p_{11}$  and  $p_{12}$  elasto-optic tensor coefficients in the cubic phase ( $131 < T < 170 \text{ }^\circ\text{C}$ ) of melt-grown single crystals of  $\text{BaTiO}_3$ . These results confirm the predicted  $T/(T - T_0)^2$  temperature dependence of the polarization fluctuation contribution, provide an estimate of the correlation volume, and lend further support to the view expressed elsewhere<sup>4,7</sup> that the correlation volume is at most weakly temperature dependent in displacive ferroelectrics and does not display critical behavior.

The elasto-optic coefficients were measured using an ultrasonic Bragg diffraction technique described elsewhere.<sup>8</sup> In the present case, a 200-MHz longitudinal mode pulse of 200-nsec duration,

generated by a  $\text{ZnO}$  thin-film transducer, was propagated through a  $Z$ -cut crystal quartz buffer rod and into a  $\text{BaTiO}_3$  sample along the [100] axis. The elasto-optic coefficients were determined relative to those of quartz<sup>9</sup> by measuring the intensities of the  $6328 \text{ \AA}$  laser light Bragg-diffracted by the incident and reflected ultrasonic pulses in both the  $\text{BaTiO}_3$  sample and the quartz rod. The sample-buffer rod assembly was mounted in a small oven equipped with optical windows in which the temperature could be controlled to within  $0.2 \text{ }^\circ\text{C}$  up to  $170 \text{ }^\circ\text{C}$ . The bond between the  $\text{BaTiO}_3$  crystal and the quartz rod was made in the oven at temperatures above the transition temperature ( $T_c = 131.2 \text{ }^\circ\text{C}$  on cooling) with Nonaq stopcock grease. By polarizing the incident light beam either perpendicular or parallel to the direction of ultrasonic strain, i.e., along the [010] or [100] directions, respectively, the absolute values of the coefficients  $p_{12}$  and  $p_{11}$  were obtained separately. The magnitude and sign of the ratio  $p_{12}/p_{11}$  were determined by measuring the angle between the polarizations of the diffracted and incident beams when the incident beam was polarized at  $45^\circ$  to the [100] axis.<sup>10</sup> Combining the observation that  $0 < p_{12}/p_{11} < 1$  with the result that  $p_{11} - p_{12} > 0$ ,<sup>11</sup> we conclude that both  $p_{11}$  and  $p_{12}$  are positive. In Fig. 1, we show the experimentally observed temperature dependence of  $p_{11}$  and  $p_{12}$  between  $131.7$  and  $170 \text{ }^\circ\text{C}$ . A strong increase in the vicinity of  $T_c$  is clearly evident. We now show that the observed temperature dependence of the elasto-optic coefficients can be understood using the polarization fluctuation model postulated in Ref. 6.

It is well known that in thermodynamic equilibrium the mean square polarization fluctuation in a cubic crystal is given by

$$\langle \delta P^2 \rangle = kT\epsilon^*/V_c , \quad (1)$$

where  $k$  is Boltzmann's constant,  $\epsilon^*$  is the zero-strain (clamped) dielectric constant, and  $V_c$  is a

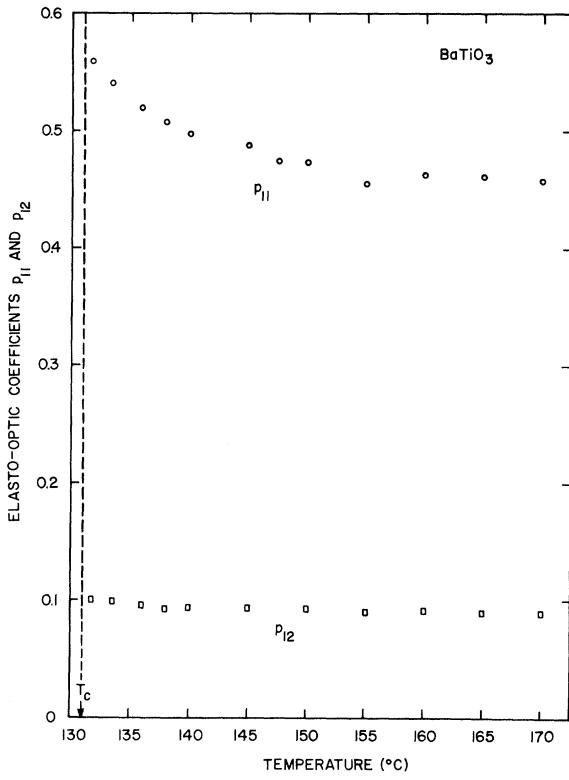


FIG. 1. Temperature dependence of  $p_{11}$  and  $p_{12}$  elasto-optic tensor coefficients of BaTiO<sub>3</sub> in the cubic phase. The Curie point on cooling is  $T_c = 131.2^\circ\text{C}$ .

correlation volume.<sup>4</sup> Equation (1) essentially defines  $V_c$ . In the absence of strain,  $\langle \delta P^2 \rangle$  contributes to the refractive index an amount

$$\langle \delta n \rangle = - \left\langle \frac{1}{2} n^3 \langle g^x \rangle \langle \delta P^2 \rangle \right\rangle, \quad (2)$$

where  $n$  is the refractive index and  $\langle g^x \rangle$  is a suitably averaged clamped quadratic electro-optic coefficient. The fluctuation contribution given by Eq. (2) has been observed directly by Hofmann<sup>5</sup> in flux-grown crystals and more recently by Singh *et al.*<sup>12</sup> in melt-grown BaTiO<sub>3</sub> crystals. In the presence of an applied strain  $\delta x_{kl}$ , the polarization fluctuation contribution to the elasto-optic  $p$  coefficients is given by

$$\delta p_{ijkl} = \delta \langle \delta (1/n^2) \rangle_{ij} / \delta x_{kl}. \quad (3)$$

To compute  $\langle \delta (1/n^2) \rangle_{ij}$ , we make the reasonable assumption that a random spatial distribution of polarization fluctuation clusters exists with each cluster having its polar axis along crystallographic <100> directions. For reasons described elsewhere,<sup>4</sup> we take these clusters to be long needles of mean diameter  $\Lambda$  and mean length  $L$  so that  $V_c \sim L\Lambda^2$ . Using this model and averaging over clusters it can be shown that

$$\delta p_{11} = \frac{g_{11}^x}{(2 + L/\Lambda)} \left[ 1 + \frac{g_{12}^x}{g_{11}^x} \left( 1 + \frac{L}{\Lambda} \right) \Delta \right] \frac{\delta \langle \delta P_1^2 \rangle}{\delta x_1} \quad (4)$$

$$\text{and} \quad \delta p_{12} = \frac{g_{12}^x}{(2 + L/\Lambda)} \left[ 1 + \frac{g_{11}^x}{g_{12}^x} \left( 1 + \frac{g_{12}^x}{g_{11}^x} \frac{L}{\Lambda} \right) \Delta \right] \frac{\delta \langle \delta P_1^2 \rangle}{\delta x_1}, \quad (5)$$

where  $\Delta$  is defined by

$$\Delta \equiv \frac{\delta \langle \delta P_2^2 \rangle / \delta x_1}{\delta \langle \delta P_1^2 \rangle / \delta x_1}, \quad (6)$$

and we have used the symmetry relation  $\delta \langle \delta P_2^2 \rangle / \delta x_1 = \delta \langle \delta P_3^2 \rangle / \delta x_1$ . We obtain an expression for  $\delta \langle \delta P_1^2 \rangle / \delta x_1$  by differentiating Eq. (1) with respect to strain assuming that the correlation volume  $V_c$  does not change and using the Curie-Weiss law  $\epsilon^x = \epsilon_0 C / (T - T_0)$ , where  $C$  is the Curie constant and  $\epsilon_0$  is the free-space permittivity. Because a detailed fluctuation theory applicable to anisotropic media is not available, we consider a simple model in which polarization fluctuations normal to the strain axis are not affected by the strain, i.e.,  $\Delta \approx 0$ . Equations (4), (6), and (1) then yield

$$\delta p_{11} = (k C \epsilon_0 g_{11}^x / V_c) (\delta T_0 / \delta x_1) \times (2 + L/\Lambda)^{-1} [T / (T - T_0)^2] \quad (7)$$

$$\text{and} \quad \delta p_{12} / \delta p_{11} = g_{12}^x / g_{11}^x. \quad (8)$$

Equation (8) provides a consistency check on the  $\Delta \approx 0$  model.

To check the validity of the functional form of Eq. (7) we have plotted  $p_{11}$  versus  $T / (T - T_0)^2$  in Fig. 2. The observed linear relationship strongly supports the view that polarization fluctuations give rise to the temperature-dependent elasto-optic behavior shown in Fig. 1. Furthermore, this result also provides evidence that the correlation volume does not display critical behavior and is

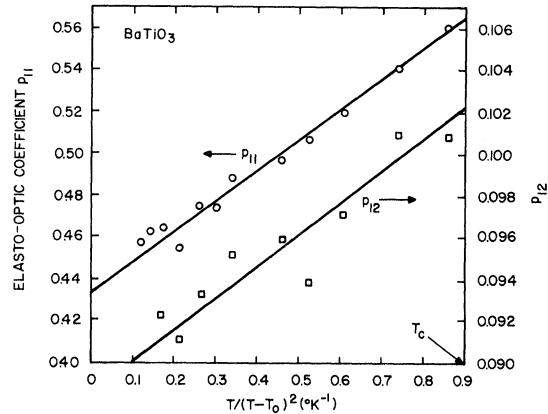


FIG. 2. Dependence of  $p_{11}$  and  $p_{12}$  elasto-optic coefficients on the quantity  $T / (T - T_0)^2$  [see Eq. (7)]. The Curie-Weiss temperature in this sample is  $T_0 = 110^\circ\text{C}$  (see Ref. 16).

at most weakly temperature dependent. The temperature-independent contribution to  $p_{11}$  given by the intercept in Fig. 2 has the value  $p_{11}^0 = 0.43$ . At  $T = T_c$ , the fluctuation contribution is  $\delta p_{11} = 0.14$ . Direct observation of  $p_{12}$  and measurement of the ratio  $p_{12}/p_{11}$  yield results for the  $p_{12}$  temperature dependence which are consistent with the  $T/(T - T_0)^2$  relationship observed for  $p_{11}$  (see Fig. 2). Because of the magnitude of  $p_{12}$  (approximately 20% of  $p_{11}$ ) and the smaller observed variation with temperature (see Fig. 1) the accuracy of these measurements is poorer than for  $p_{11}$ . Our best estimate for the temperature-independent component of  $p_{12}$  is  $p_{12}^0 = 0.089 \pm 0.004$ , and for the fluctuation component is  $\delta p_{12} = 0.013 \pm 0.002$ . We thus find an experimental value of  $\delta p_{12}/\delta p_{11} = 0.093 \pm 0.02$ . To compare this result with the prediction of Eq. (8) we require values for  $g_{11}^x$  and  $g_{12}^x$ . To our knowledge these quantities have not been measured, but they can be obtained from the known values of the zero-stress coefficients  $g_{11}^x$  and  $g_{12}^x$  by correcting for the photoelastic contribution using the relations

$$\begin{aligned} g_{11}^x - g_{11}^x &= p_{11}Q_{11} + 2p_{12}Q_{12}, \\ g_{12}^x - g_{12}^x &= p_{12}Q_{11} + (p_{11} + p_{12})Q_{12}. \end{aligned} \quad (9)$$

Taking the electrostriction coefficients<sup>13</sup>  $Q_{11} = 0.10m^4/C^2$  and  $Q_{12} = -0.038m^4/C^2$ , and the  $g$  coefficients<sup>14</sup>  $g_{11}^x = 0.12m^4/C^2$  and  $g_{12}^x = -0.01m^4/C^2$ , we find on substitution into Eq. (9) that  $g_{11}^x = 0.072m^4/C^2$  and  $g_{12}^x = 0.005m^4/C^2$ . These results give  $g_{12}^x/g_{11}^x \approx 0.07$ . In view of the uncertainties in the magnitudes of the  $g^x$  and  $Q$  coefficients, we consider that the agreement between experimental va-

lues of  $\delta p_{12}/\delta p_{11}$  and  $g_{12}^x/g_{11}^x$  is sufficient to support the validity of Eq. (8) and hence the consistency of the  $\Delta \approx 0$  model.

We now calculate the correlation volume  $V_c$  using Eq. (7). It can be shown that<sup>15</sup>

$$\delta T_0/\delta x_1 = 2q_{11}\epsilon_0 C, \quad (10)$$

where  $q_{11} = c_{11}Q_{11} + 2c_{12}Q_{12}$ , and  $c_{11}$  and  $c_{12}$  are elements of the elastic stiffness tensor. Substituting  $C = 1.8 \times 10^5$  °C,<sup>16</sup>  $T_0 = 110$  °C,<sup>16</sup>  $c_{11} = 1.73 \times 10^{11}$   $N/m^2$ ,<sup>17</sup>  $c_{12} = 0.82 \times 10^{11}$   $N/m^2$ ,<sup>17</sup> and  $L/\Lambda = 5-10$  into Eq. (7) we obtain a value

$$V_c = 4.5 \pm 1.2 \times 10^4 \text{ Å}^3. \quad (11)$$

Our choice for the aspect ratio  $L/\Lambda$  is based on detailed arguments given elsewhere.<sup>3,4</sup> It is of interest that the magnitude of the correlation volume obtained here from photoelastic measurements is within the range  $10^4-10^5 \text{ Å}^3$  predicted on the basis of electron scattering,<sup>4</sup> bandedge temperature dependence,<sup>18</sup> and refractive-index temperature-dependence results.<sup>12,18</sup> These experiments also indicate noncritical behavior of  $V_c$ . Our experimental results lend support to the view expressed by Lines<sup>7</sup> that intercell correlations are weakly temperature dependent in displacive ferroelectrics.

In conclusion, we have shown that a simple polarization fluctuation model can account for the temperature-dependent photoelastic behavior of BaTiO<sub>3</sub> above the Curie point. The results indicate that the correlation volume does not display critical behavior and has a value consistent with results obtained from other types of experiments.

\*Present address: Quantronix Corp., Smithtown, N. Y.

<sup>1</sup>J. J. Brophy, in *Fluctuation Phenomena in Solids*, edited by R. E. Burgess (Academic, New York, 1965), Chap. I.

<sup>2</sup>M. DiDomenico, Jr., S. H. Wemple, S. P. S. Porto, and R. P. Bauman, Phys. Rev. 174, 522 (1968); also, S. H. Wemple and M. DiDomenico, Jr., in *Light Scattering Spectra of Solids*, edited by G. B. Wright (Springer, New York, 1969), p. 65.

<sup>3</sup>Y. Yamada and G. Shirane, Phys. Rev. 177, 848 (1969).

<sup>4</sup>S. H. Wemple, M. DiDomenico, Jr., and A. Jayaram, Phys. Rev. 180, 547 (1969).

<sup>5</sup>R. Hofmann, Ph.D. thesis, Eidgenössische Technische Hochschule, Zürich, 1968 (unpublished).

<sup>6</sup>S. H. Wemple and M. DiDomenico, Jr., Phys. Rev. B 1, 193 (1970).

<sup>7</sup>M. E. Lines, Phys. Rev. (to be published).

<sup>8</sup>R. W. Dixon and M. G. Cohen, Appl. Phys. Letters 8, 205 (1966).

<sup>9</sup>H. H. Landolt and R. Börnstein, *Elastic, Piezoelectric, Piezo-optic, and Electro-optic Constants of Crystals* (Springer, Berlin, 1966), Group III, Vol. 1, p. 137.

<sup>10</sup>K. Vedam and S. Ramaseshan, in *Progress in Crystal Physics*, edited by R. Krishnan (Interscience, New York, 1958).

<sup>11</sup>This result is obtained by noting that the difference between unclamped and clamped quadratic electro-optic coefficients  $g_{11} - g_{12}$  is positive. See A. R. Johnston, Appl. Phys. Letters 7, 195 (1965).  $Q_{11} - Q_{12}$  is also positive; see Ref. 13.

<sup>12</sup>S. Singh, S. H. Wemple, M. DiDomenico, Jr., J. Potopowicz, and I. Camlibel (unpublished).

<sup>13</sup>P. Joho, Z. Krist. 120, 329 (1964).

<sup>14</sup>E. P. Ippen, IEEE J. Quantum Electron. QE-2, 152 (1966).

<sup>15</sup>See, for example, F. Jona and G. Shirane, *Ferroelectric Crystals* (Macmillan, New York, 1962), pp. 144-145.

<sup>16</sup>S. H. Wemple, M. DiDomenico, Jr., and I. Cam-

libel, J. Phys. Chem. Solids **29**, 1797 (1968); also I. Camlibel, M. DiDomenico, Jr., and S. H. Wemple, *ibid.* (to be published).

<sup>17</sup>D. Berlincourt and H. Jaffe, Phys. Rev. **111**, 143 (1958). The  $c_{11}$  value is confirmed by this study.

<sup>18</sup>S. H. Wemple (unpublished).

## Temperature and Field Dependence of the Weak Ferromagnetic Moment of Hematite\*

C. W. Searle and G. W. Dean

Department of Physics, University of Manitoba, Winnipeg 19, Canada

(Received 3 October 1969)

Deviations from the expected temperature dependence of the weak magnetic moment  $m$  are explained by considering the microscopic differences between the dipole-dipole and single-ion contributions to the anisotropy energy.

### INTRODUCTION

Hematite ( $\alpha$  Fe<sub>2</sub>O<sub>3</sub>) is a well-known antiferromagnet with a rhombohedral crystal structure. It also possesses a weak spontaneous magnetization. With cooling it is found that there exists a certain temperature  $T_M$ , at which the spontaneous magnetization suddenly disappears.<sup>1</sup> Below  $T_M$  the antiferromagnetic axis coincides with the [111] direction, while above  $T_M$  the antiferromagnetic axis is in the (111) plane.<sup>2</sup> The origin of the weak ferromagnetic moment is due to the Dzialoshinskii-Moriya (DM) interaction<sup>3,4</sup> which results in a slight canting of the sublattice magnetizations to produce a weak ferromagnetic moment. The expression for the Hamiltonian in the molecular field (MF) approximation is usually written as<sup>5</sup>

$$\epsilon = \lambda \vec{M}_1 \cdot \vec{M}_2 - \vec{D} \cdot (\vec{M}_1 \times \vec{M}_2) - \vec{H} \cdot (\vec{M}_1 + \vec{M}_2) + \epsilon_K, \quad (1)$$

where  $\vec{M}_1$  and  $\vec{M}_2$  are the sublattice magnetizations,  $\lambda$  is the MF constant,  $\vec{D}$  is the DM vector and is parallel to the [111] direction,  $\vec{H}$  is the applied field, and  $\epsilon_K$  represents the anisotropy energy.

Searle<sup>6</sup> has recently suggested, using symmetry arguments, that once the spins have been labeled according to their respective sublattices the sense of  $\vec{D}$  along the [111] direction is still undetermined. This then leads to the possibility of observing ferromagnetic domains which would not be associated with antiferromagnetic domains.<sup>7</sup> This does not rule out the existence of ferro- and antiferromagnetic domains reported by Nathans *et al.*<sup>8</sup> It was also stressed that  $\vec{D}$  should be replaced by  $\langle \vec{D} \rangle$ , where  $\langle \dots \rangle$  means the appropriate statistical average. The expression for the weak magnetic moment  $m$  can then be written as

$$m = (\langle H_D \rangle / H_e) M. \quad (2)$$

Here  $\langle H_D \rangle = \langle D \rangle M$ ,  $M$  is the magnitude of one of the

sublattice magnetizations, and  $H_e = \lambda M$ . Equation (2) implies that the ratio  $m/M = \langle D \rangle / \lambda$  should decrease with increasing temperature. It was also suggested that the field-induced transition, for temperatures below  $T_M$ , might be described better using this statistical model than the usual MF approach where  $\vec{D}$  is assumed to be constant (such as in calculations by Cinader and Shtrikman<sup>9</sup>). The purpose of this experiment was to look for some of these effects using static magnetization measurements.

### RESULTS

The upper curve in Fig. 1 indicates the temperature dependence of the normalized sublattice magnetization,  $M/M_0$ . Values of  $M/M_0$  are taken from

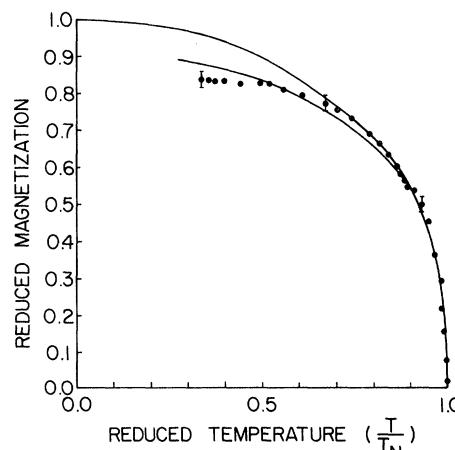


FIG. 1. Temperature dependence of the weak ferromagnetic moment of hematite. The upper curve represents the normalized temperature dependence of the sublattice magnetization,  $M/M_0$ , the dots are the experimental data  $m/m_0$ , while the lower curve is calculated from Eq. (6).